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ON TRAVELLING-WAVE SOLUTIONS TO SYSTEMS OF CONSERVATION
LAWS WITH SINGULAR VISCOSITY

Howard Prue and Richard Sanders •,..

. INTRODUCTION

In this paper we discuss sufficient conditions for the existence of

smooth, large-data travelling-wave solutions to certain systems of nonlinear,

semidefinite parabolic partial differential equations. Specifically, we

consider conservation laws which have the form:

+(1.1) a f ( -"L (A.(u)

at ax ax ax 1

where u, f(u) c RT and where A(u) e pn x n may be singular. Moreover, we

include in this study problems for which f(u) and A(u) are not globally

defined. To illustrate our ideas we apply the abstract results of this paper

to the one-dimensional compressible Navier-Stokes equations; see [6] for a

classical treatment of this problem. In the Navier-Stokes equations the left

hand side of (1.1) is given by:

FP1 m

2j

LeJ [_m(e + P)/p""

where p, m and e are respectively a fluids density, momentum and total

energy. The variable P represents the fluids pressure and is given by:

P - (y - 1)e - m2 /2p)

for an ideal, polytropic gas. y > 1 is a thermodynamic constant. The

viscosity matrix A(u) is given by:

0 0 0

2 I '-.---.-"-'

v P vp v P v
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where again X and cv  are thermodynamic constants, and p is a positive

constant often referred to as the coefficient of viscosity.

A travelling-wave solution is a particular solution of (1.1) which has

the form:

*(1.2) u(x,t) =w(x -st),

lim w(x - st) = u ,

- for some scalar constant s. Inserting the Ansatz (1.2) into (1.1) and

integrating we find that w(T) satisfies the ordinary differential equations

1 1.3) -s(w - u_) + f(w) - f(u_) = A(w) d ,

*.' where here T represents the travelling-wave variable x - st. (In later .... ,

sections we use t to represent the travelling-wave variable.) For a

trajectory of (1.3) to satisfy (1.2) it is easily seen that given u- we must

have that u+ and s satisfy the Rankine-Hugoniot condition:

(1.4) -s(u+ - u-) + f(u+) - f(u) W0

(From time to time we shall write s as s(u_,u+) to indicate its explicit .

dependence on the states u- and u+.) Given that u_, u+ and s satisfy

the Rankine-Hugoniot condition, it is a natural question to ask whether there S...."

is a smooth function w(T) that satisfies (1.2), (1.3). To answer this

question when the viscosity matrix A(u) is singular our approach is to

0
perturb A(u) to a nonsingular matrix A (u) (with A0 (u) = A(u)) and b -.

establish the existence of a family {w£ } of solutions to the modified

Cproblems. The behavior of W as £ tends to zero is then investigated.

For the Navier-Stokes equations the modified problems are obtained by

introducing the artificial viscosity

(1.5) C [a(u) , (log( 2 - 2 2 ) ' .

e - m /2P 2p(e - m /2p)

(with au) > 0 to be determined), into the conservation of mass equation.

-2-
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This paper is divided into five sections. In Section 2 we list a number

of preliminary assumptions. Section 3 is devoted to the existence of I %j-.

travelling-wave solutions to (1.1) when the viscosity matrix A(u) is --

nonsingular. rjngular viscosity problems are treated in Section 4. Finally,

in Section 5 we apply our results to the compressible Navier-Stokes equations.

Acknowledgement. We wish to thank Professor J. V. Ralston of UCLA in

particular for suggesting the proof of Theorem 1 as well as for his other

invaluable comments.

12. SOME PRELIMINARY ASSUMPTIONS

The global structure of the Hugoniot locus (that is the set of states

u+ that satisfy (1.4) for some fixed u- and variable s f R) has

fundamental importance to our analysis. To begin let R denote some open

connected subset of 5P. The set R, which is usually determined from the

physics of (1.1), should be regarded as the set of physically admissible

states. We first require that

(2.1) f(u) f C3(R)

and we assume that the eigenvalues of Df(u) are real, distinct and are

arranged in increasing order:

(2.2) X1 (u) < X2 (u) < ... < A (u)
n. .

In addition to this, we require that for each Ak(u) and all u c R either

(GNL) V rk (u) $ 0 ,rk -)

* ~or .

(LD) Xu() * rk(u) - 0,

is satisfied, where rk(u) is the right eigenvector of Df(u) corresponding

-3-
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to Ak(u); see (8]. Fields that satisfy (GNL) are often referred to as

" "genuinely nonlinear" fields, and fields that satisfy (LD) are referred to as

"linearly degenerate".

- For u- f R it is well known that (2.2) implies that the Hugoniot locus

is locally the union of n connected one-dimensional manifolds. Following

Mock (11) we denote the Hugoniot locus about u_ as

n
(2.3) r(u) = u rk(u) ,

k-i

where the index k is chosen such that the tangent vector of rk(u) at

u_ is rk(u). We require that the local structure of r(u) is valid in

the large and that R is chosen so that for any u. e we have

(2.4) r(u_) C R

Next we impose a global "entropy condition" on those fields which satisfy .*

(GNL), see [8]. Specifically, if u+ c r k(u) where Xk(u) satisfies (GNL),

and when k (U) > k (U+), we require that -

(2.5) Ak(U _) > s(u_,u
k (- >s(- u+ > Xk(u+)

Xk+l (U) > s(u,u+) > Xl(U )

where s(u_,u+) is the "shock speed" determined by the Rankine-Hugoniot

condition. (2.5) is of course the celebrated Lax condition E.

Remark 2.1: For those X (u)'s that satisfy (GNL) one easily deduces that
k

(2.5) partitions rk(u) into two disjoint branches separated by u_. On one

branch (2.5) is satisfied. (Throughout we shall denote this branch by

rk(U ).) on the other branch (2.5) is satisfied with the roles of u-. and

k-

u+ reversed.

Finally, we assume that f(u) admits a convex entropy function. A

convex entropy function, say E(u), is a scalar-valued function which

-4-
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satisfies: *.J ..

(2.6a) E(u) C C3 (R) , *

(2.6b) D2E(u) is positive definite on

(2.6c) D2E(u)Df(u) is symmetric. p"

Given that n - 2 and (2.2) is satisfied, such a function often exists (9]. I%

Frequently this is not always the case when n ) 3. Since, as will be seen

below, the existence of E(u) is crucial for our analysis, we should mention

that numerous physical problems do indeed admit a convex entropy function (4].

We now state two lemmas without proof. Their proofs can easily be

obtained by adapting Lemma 5 and Theorem 3 from Mock (11].

Lemma 2.1. Suppose that all of the assumptions above (with the possible

exception of (2.6)) are satisfied. Let u+ c rk(u_), u+ ' u_, where Xk(u)

satisfies (GNL). Then the function

H(u_,u+;u) = -s(u_,u+)(u - u_) + (f(u) - f(u_))

has no zeros in R other than u- and u+. Moreover, given u_ and u+

and any open set 0 containing u_ and u+# there is a positive constant

c(u_,u+,0) such that for any u c R\0

I H(u.,u3)u c(u_,u ,O)

Lemma 2.2. Given that E(u) satisfies (2.6), there exists a smooth scalar-

valued function F(u) such that S.

(Df(u))TVE(u) = VF(u)

Moreover, if u+ (0 u-) lies in a genuinely nonlinear field on which the

entropy condition (2.5) is satisfied (i.e. u+ c r-(u-)), then

s(u.,u+)(E(u+) - E(u_)) - (F(u+) - F(u_)) > 0

On the other hand, if u+ lies in a linearly degenerate field the inequality

above becomes an equality.

-5-
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we conclude this section by showing that the flux term f(u) from the

Navier-Stokes equations satisfies all of the assumptions so far imposed.

Recall from Section 1 that the flux terms of the Navier-Stokes equations are

given by:

m+

f(u) = m 2/P + P

where P is the density of the fluid, m is the momentum and e is the

total energy (kinetic plus internal energy). The pressure term above is given

by:

p- (Y- 1)(e -. 
2 /P)

for an ideal, calorically perfect gas, where yw > 1 is a thermodynamic

constant. The eigenvalues of Df(u) are:

(2.7) X(u) = rn/P - C, x (u) - rn/P1  X(u) rn/p + C

where C, the sound speed, is given by: m
C2 -P/P.

Furthermore, A(u) and A (u) satisfies (GNL), while X (u) satisfies

MLD). The Hugoniot locus for this problem is readily computed to be (12]:

(2.8) u-) P+ P1 (8 + O)/C + 0)

(m/P) + =(m/P)- + C Y/ -

(1 +=0)/

r2(u-)= P+ =pe0

(m/P) = (r/P) 1

-6-



% r -u . + P W0 e

% 3

_r3(u )= p + Be)/(8 + 6) . -.

(m/P)+ (m/P) + C 2VT

Y1++1) -  
, j,1-1" r

where and T - - are constants and the parameter 6 lies in

0. Moreover, in the 1 and 3 fields above the entropy condition (2.5) is

satisfied when 0 < e < ly see Smoller's book [12) for a thorough development

of these facts.

We take for the set of physically admissible states the convex set

TR ((Pme) P > 0, p > 01

and one easily finds that r(u) C R for any u- e R. It is furthermore well

known that the ideal, calorically perfect Navier-Stokes equations admit a

convex entropy function

E(u) =-P log (P/((.- 1 )pY))

see (4]. Clearly E(u) f C3 (R) and a lengthy calculation will verify that

E(u) above also satisfies (2.6b) and (2.6c) [4, 1].

We therefore have that the flux terms of the Navier-Stokes equations fit

completely into the framework we have so far developed. We should mention

however that not all of the hypotheses above are sacred (other than (2.6) that

is). We have chosen the route of simplicity over generality here since such

an interesting physical example is so easily accommodated.

§3. LARGE-DATA TRAVELLING-WAVE SOLUTIONS TO POSITIVE DEFINITE SYSTE4S

In this section we state sufficient hypotheses and outline the technique

we use to establish the existence of large-data travelling-wave solutions to a

particular version of (1.1). The specific simplifying assumption we make

here, in addition to the assumptions of Section 2, is that the "effective"

S• - - --
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diffusion matrix, D2EA, has positive definite symmetric part. Although the

main result of this section is a generalization of previously known results

(5, 2, 3, 11], the positivity assumption is unreasonable when considering

problems such as the compressible Navier-Stokes equations or other physical

examples with singular viscosity matrices. Nevertheless our approach

motivates a systematic procedure for constructing reasonable artificial

viscosity terms for which uniform estimates are obtained. With these

estimates the vanishing artificial viscosity method can be applied.

Remark 3.1. The condition that D2EA have positive definite symmetric part

is equivalent to the condition that D2EA- 1 have positive definite symmetric

part.

We use the method of continuation to obtain a large-data travelling-wave

solution. A homotopy invariant is constructed which if equal to unity

guarantees the existence of a travelling-wave. The problem is then smoothly

deformed to a small-data (weak-wave) problem for which it is routinely seen

(via an argument similar to Foy [5]) that the invariant is in fact unity.

Before stating the main result of this section (Theorem 1) we outline our

method of proof.

Let rk(u-) denote the branch of the Hugoniot locus on which the entropy
k-

condition (2.5) is satisfied, (of course we assume that X (u) satisfies
k

(GNL)). we suppose that u+ lies on this branch and that u +(a) is the arc- b

length parameterization along r k(u_ ) with u+(0) = u- and u+(L) = u+.k - th +(O = andu+() =u~*Now

• .consider the variable wave strength version of (1.1) with its associated

travelling-wave equation:

-8-
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* (3.1) AMv H(u ,u (a)1w)

urn w(t) U_ u, ur w(t) U+-(O),

*where H(u_,u - (a);u) is given by:

-B~u ,u4-(a))(u -u) +- f(u) -f(u..).

The scalar function

(3.2) A(u) =VE(u) *H(u u4 (a);u)

+ s(u ,u -(CO))(E(u) -E(u_.)) -(F(u) -F(u_))

will serve as a Lyapunov function. The fact that A(u) is indeed a Lyapunov

function is evident by differentiating (3.2) along trajectories of (3.1),

giving

dANw) D 2 E(w)H(u ,u(a)w) *A (w)H(u u (a)1w).

-(Recall from Lemma 2.2 that Df VE =VF.) Since by assumption D E has

d
*positive definite symmetric part, Lemma 2.1 implies that T-. A(w(t)) > 0 for

*all w(t) c R except for u-. and u (a). Next we reparameterize t in PF9

(3.1) so that

(3-3)A(w(t)) I

Away from u_ and u+-(a) this is equivalent to multiplying the left hand

* side of (3.1) by the positive function

- 2 -1
P(w) DE(w)H(u_,u- (a);w) *A (w)H(u-, u4 (G)w)

we wish to show that the unstable manifold of (3.1) near u- can be I

* connected to the stable manifold near u4-. With this in mind, consider the

* region in state-space given by:

(3.4) M_. L_(c) r) U

* where

L (E) (u e R A (U) E}c, (C > 0)
%7.

U unstable manifold of (3.1) near u-

-9-
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We now give:

Claim 1. For all 0 < a 4 L, M_ is homeomorphic to the sphere Sn-k in a

small neighborhood of u- provided that c > 0 is chosen sufficiently

small. (Note that throughout this section k represents the index of the

entropy condition satisfying branch of the Hugoniot curve on which u+(a)

lies.)

Before proving the claim we state a lemma from Mock [11].

Lemma 3.1. Let B and C be matrices and suppose that B has positive

definite real part, Re(B) 1/2 (B + B*), and that C is nonsingular and

Hermitian. Then the form q(z) = z*Cz is positive definite on the

generalized eigenspace of B-1C corresponding to those eigenvalues with

positive real parts.

Proof of Claim 1: The proof follows from the assumptions of the previous

section and Lemma 3.1. For e > 0 sufficiently small, L_(e) is a manifold

of codimension 1. This is clear since the only critical values of A(u) are

A(u) = 0 and A(u (a)) > 0 (see Lemma 2.2) and c can be taken between

these two values. The unstable manifold of (3.1) is given locally by the

generalized eigenvectors of A (u_)DH(u ,u+(a);u ) which correspond to those

eigenvalues with positive real parts. Combining the facts that D2E(u_)

symmetrizes DH(u ,u +(0);u ) and D2EA has positive definite symmetric part,

it is easily shown that the number of eigenvalues of A 1 (u_)DH(u_,u +(a);u)

with positive real parts is equal to the number of positive eigenvalues of

DH(u.,u+(a);u_). Counting this number (that is, using the entropy condition

(2.5)) we conclude that dim(U_) =n - k + 1, and the count is independent 35

of 0 < a 4 L. Finally, using Lemma 3.1 with C = D2E(u )DH(u ,u +(a)u )'

and B- D2E(u_)A(u_), we have that

D2A(u ) D 2E(u )DH(u ,u, (a);u )

-10-
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is positive definite when acting on the tangent space of U_ near u_.

Thus, M is locally homeomorphic to the sphere sn-k .

What follows below are the key points of this section. Let ,t(x)

represent the fl:w of the system

(3.5) (WAw -L W H(u_,U+(O)w)

w(O) = x ,

and notice that qt (when defined) maps M_ into the codimension 1 manifold:
0

(3.6) L+() - {u e R A(u) - Alu+(a)) - el

when to = Alu+(a)) - 2e and where again we have taken e > 0 small. Next

define

(3.7) M+= L+ ( ) CS+

where

S+ f stable manifold of (3.1) near u (a)

We now give another simple claim:

Claim 2. For all 0 < a 4 L, M+ is homeomorphic to the sphere S -l in a --

neighborhood of u (a) where as before e > 0 is taken sufficiently small.

The homotopy invariant alluded to above is the modulo-2 intersection

number of T 0 (M -) and M+ defined inside the ambient space L+ (e); see
t0

[7]. As per Claim 1 and Claim 2, Vt0(M ) and M+ have complimentary
0

dimension, that is dim(lt (M-)) + dim(M+) f dim(L +(E)) , provided that
0

t o  M_ L + (e) is a smooth map. Unfortunately, for general large-data

problems, this need not be the case. The next lemma addresses this matter in ~..
the small.

Lemma 3.2. The flow qt(M 0 4 t < to, remains in a compact subset "-.
of R for all 0 < a < a0 , provided that c0  is taken sufficiently small.

........... I1 °.-.. °- . °° .'."°'-. . • °. ,° . - -, ." . . . -° . o . ... . -,



Proof of Lemma 3.2: Observe that

A A(ua _,u)) - u(uu (a)) (u+) ((u)) - u+ )- F(u.)) .

For weak and entropy satisfying shocks (i.e. u (a) c rk(u with a small)

Lax has shown that

(u+ ()) - 0( 3  > 0 •

Computing 2 A(wltls))), where a is the i.rc length parameterization along

a trajectory of (3.1), we obtain

d D 2E(w)H(u,u+(a);w) AI (w)H(u'u+( 1w))
A (w) ,.- -tA-  w(lu_,u+()w) .- :-;

and it is easily seen that for any w c B(u_,6) with 6 > 0 small, we have
a.W

A(w) d const(- - +(a)w)•

*The positive constant above does not depend on 6. Expanding Mock's proof of

Lemma 2.1 one determines that

(3.9) IHlu_,u+Io);w)l > const 80 ,"::.:i

for w e R but outside B(u_,6) U B(u+(a),S), again for 6 > 0 and a > 0

sufficiently small. We next show that w(t) cannot leave

B(u_,P) U B(u+(c),p) for an appropriate choice of p.

For any 0 4 t < t < to, we have from (3.3) that

td
( (3.10) ANu(0l) > t A(w)dt

t

and we choose t to be the first time that w(t) B(u_,6) U B(u+(a),6). To

reach a contradiction suppose that w(t) leaves

B(u., + a) U B(u+(a),6 + a). Reparameterizing the right hand side of (3.10)

in terms of arc length and using (3.8) and (3.9) we must have that

Mu+(a)) > const(1 6 - o)6a * a

-12-
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However, recalling that A(u(a)) 0(a3), the inequality above would imply

that

O(a) ) const(1 - 6 - 16•

Setting 6 K a with K < 1/(2a), we reach an obvious contradJition for

small a and large K. This completes the proof since we could take a

smaller if necessary to force B(u_,(K + I)a) U B(u+(C),(K + I)a) to be

contained in R.

Remark 3.2. With the special assumption that R I n along with the

assumptions that D2E(u)A-(u) has uniformly positive definite symmetric part

and A- u) is uniformly bounded, one can show that the conclusion of the

previous lemma remains valid independent of the size of a.

The proof of the next proposition follows the proof of Theorem 1.

Proposition 1. Suppose that the preliminary assumptions of Section 2 are

satisfied. Furthermore, assume that D2EA has positive definite symmetric .

part in R, u- c R and u+(a) e rk(u-), the entropy condition satisfying

branch of r'(u-). Then I 2 (Ot (M.),M4 ), the modulo-2 intersection number,
k 2 0

equals one provided that 0 < a ( 0  with a0  sufficiently small. %

Having additional knowledge concerning V (M ) allows us to state:

Theorem 1. Suppose that the assumptions of Proposition I are satisfied along

with the key hypothesis:

(A) pt(M-) for 0 4 t 4 to remains in a compact subset

of R for all 0 < a ( L.

Then (1.1) admits a smooth travelling-wave solution for any u+(a) with

0 <a C L.

Proof of Theorem 1: By hypothesis A, Claim 1 and Claim 2, together with the

usual theorems from ordinary differential equations, we have that Vt0(M)
0

and M+ are compact submanifolds of L+(e). Moreover, t0 and M+ are -.

-13-
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smoothly dependent on 0 < a 4 L, and they have complementary dimensions vith

respect to L+CC0. Therefore, the modulo-2 intersection number,

12 4 t CM_),M+) is veil defined and remains constant throughout the
o

entire a deformation. Proposition 1 establishes the fact that

'2~ (14 1M)M+ for small col thus 1'2(It 0 (M) M)- 1 for any

an4a e. L. So we conclude that there exists at least one trajectory of

'3.1), (with a - L), that connects the unstable manifold near u- to the

* stable manifold near u+CL). This is the desired result.

Proof of Proposition 1: First observe that (3.5) can be written as:

2 d
(3.11) 1jiw)D E(w)A(w) =VANw)

Applying the results of this section it is clear that we can deform

D2E~w)A(w) to the identity without changing the modulo-2 intersection number,

n
provided 0 < a a and a is sufficiently small. Now let {r0 0O9 9.1

*represent the orthonormal set of eigenvectors to the symmetric matrix

2 2
(3.12) D E(u-)OH(u-,u (cy);u-) = D M~u)

*arranged so that its eigenvalues are increasing with L.. Consider the
n

*orthogonal change of coordinates w- u_. v9.r9  and the scalar function

Ac v)=- X (9. v9  A7v
c z b 3

where b is given by

( r )(r ( r
c k a k 8 kylaau 6au

cxc
*A (v) contains the important local information of AMw. A straightforward

calculation shows that the eigenvalues of (3.12) are given by:

2j +~ ) a for 9. < k

(2 a+0(2) for t. = k *~

+ + 0(a) for Z. > k

-14-



and b can be rewritten as .

2b (0 ~k) + 0(a),

where aim I

(Sk2 IVAkU 1 • r T yr•2u.i ...
k k- k k k

(Again, recall that the index k refers to the fact that U (a) c rk(u

+ k U.

Defining v' - (Vl,...,Vk_1.,0,Vk+1,...,vn)T , we have from Taylor's Theorem

that '

(M(w)- AC(v))- 0(lvkllvI + lv,1 2 + lvl 3) ,

and

" (Alw) - MCv)) = O(1v12) for I ' k •

Rotate coordinates, (w - u- = Rv), and consider the final deformation:

dvdt ) VvA(nv), ._

where A(Mnv) = AC(v) + (A(w) - AC(v)). Following the outline previously

laid down in this section (Claim 1, Claim 2 and Lemma 3.2) along with the

estimates above it is not difficult to show that I2('t (M_),M+ ) is well
0

defined and remains constant for all n c [0,1] provided that a > 0 is

fixed and is sufficiently small. Setting n = 0 one easily verifies that -
.- . -

9t0 (M) intersects M+ exactly once and that this intersection is indeed

transversal. Therefore, the modulo-2 intersection number is I for n = 0

from which by homotopy invariance we conclude the same for n = 1.

Remark 3.3. We have intentionally excluded the case when u+ lies in a

linear degenerate field. In this case (3.1) can have a smooth solution only

for trivial data u+(a) = u-. This is seen by first recalling that

D 2E(u)H(u_,u +(a);u) - VA(u)

"1. 
"

" -'., .." .."..".. . -' .".,-..,,..,,•,.- .. " .. ... , .", . . . . . .* . . .. . . ••... .. . .. , ••''' . ' .. ." . - . - . -" i",
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dw T 2and then multiplying (3.1) by - D E(w) doing so we obtain:

Lemma 2.2 states that when u+(a) is in a linear degenerate field .

Alu +(a)) = Alu_) = 0, therefore the equation above allows us to draw only

one conclusion, that is w(t) = const.

We end this section by giving sufficient conditions under which " .

hypothesis A of Theorem 1 is satisfied. We state these conditions here as a

O(-DE~wA~w)--..'v) ."

theorem since it is this technique we apply in the following sections.

Theorem 2. let G C r represent the set of states that can be reached by a

dany smooth path x(t) with x(O) C M_, T A(x(t)) ) 0 and

E < A(x(t)) 4 A(u+ - c. Suppose first that

(a) C R.

Second, assume that there exists a smooth, nondecreasing function g(r), with

lim g(r) = +o, which satisfies

T 21/2 ..

(b) min T U(u)D2 E(u)A(u)t] 1 g,(Iul) ,

for all u c . Then qt(M ) remains in a compact subset of R for any

*Ot A(u+)-""e-20 4 t 4 -~ 2c.. .

Proof: Clearly by assumption (a) we have that yt(M) remains in a closed

subset of R. To see that pt(M_) remains bounded, let m_ c M_ and observe

that

- t t dt"2

Sg(jw(t)j) g(Im.)2= [ft ' g(lw(t)I)dT]2 4 t f Id g(lw(r)fl 2dT
0 0

Computing the derivative in the right hand side above and using assumption (b)

we arrive at
t T

2 ,dw 2 d
[g(lw(t)l) - g(Im_l)]2 < t f - lj(w)D E(w)A(w) - dT

-16-
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Using (3.11) we find that the integrand above is equal to dA , and
A w) an

recall from (3.3) that this quantity is normalized to 1. Therefore we I
conclude that

g(lw(t)l) 4 ql m--) + t q(jm._j) + Mul - 2e

which implies the desired result.

14. SINGULAR VISCOSITY HATRICES

We carry over all of the hypotheses of Section 2 to investigate problem

(1.1) in the case when the viscosity matrix A is singular. We furthermore

assume the set R of physically admissible states is convex. The convexity

of R along with the assumption that D2E(u) is positive definite on R "'.-*""

allows us to introduce the globally defined change of coordinates:

(4.1) v 3(u)•

In the new coordinates, the travelling-wave differential equation (3.1)

becomas:

(4.2) B(v) - H(u.,u+iu(v))

dt

lir v(t) "v VR(u )
t + dt i

2±

where B(v) - A(u(v))(D 2 1(u(v))) " . Throughout, B(v) is assumed to have

positive semi-definite symetric part. In the coordinate system given by

(4.1), the right hand side of (4.2) is given by:

H(u_,u+u(v)) - v A(u(v))

(recall that A(u) is defined in equation (3.2)). To simplify the notation

below we define X(v) by:

X(v) S A(u(v))

Remark 4.1. We choose here to work in the coordinate system (4.1) because it

is this coordinate system we use in the application of the next section.

-17-
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We now make some further simplifying assumptions. Suppose that the null-

space of the matrix B(v) is spanned by p independent constant vectors.
'p. This allows us to make a simple rotation (which below we take to be the

identify) so that B(v) may be partitioned as:

(4.4) B(v) [b:" bv)bv) bv)

where b(v) is a (n - p) x (n - p) positive matrix and b(v) is an

(n - p) x p matrix. To further simplify our presentation we assume that
(. -pxpmti

b(v) a 0, and we note that the case when b(v) $0 requires only a slight

modification of our arguments below.

To show that (4.2) admits a solution we modify the diffusion matrix (4.4)

by introducing an artificial viscosity term. Specifically, we consider the

family of modified problems:

C
B(v ).--V A(v,vdt v

(4.5)

lim v (t) = v ,
t+tC" O

where

(4.6) (v) [

b(v)

and where a(v) > 0 is to be determined. Below we show with reasonable

hypothesis that the modified problem (4.5) has a solution for any e > 0, and

we show that the family {v C 0 satisfies uniform estimates that allows for

the passage to the vanishing artificial viscosity limit.

-" Before giving the main results of this section we introduce some further

notation. Partition a vector v E le as v ' (v Iv2) where vI  RP

and v2 c 3n-p
. For a smooth function A : +n * R, let A v represent a V

ii: ~-18- : i

........................

o. . . . .. .. - • - . . o o. . . . . . . o. . . . ° o. . . . -. . . . . . . . . . . . . . . . .. .. . ° .

.. .. ,.%***** .='. **~ ", -,. ,,... . ', ,-. - .. : - -.- -. . . . .- ., . .-. . ..-. .o .. . . .. . . .o . . . . .,



vector function with elements A, 1 ( i p, and let Av represent a
i 2

vector function with elements ri A, p + 1 4 i 4 n. The notation A .
± V1 VV

shall represent a (p x p) matrix with elements v A, I j 4 P' "

and A 2  shall represent an (n - p) x p matrix with elements Vi~v  A, -
v 2 i aia j

p + 1 C i C n, 1 C j 4 p. Finally, for any square matrix M(v) c 1rm we

define the scalar-valued function QM(v) by

QM(v)- min TM(v)"

We are now ready to address the question of the existence of solutions to --

the modified problem (4.5). The particular list of assumptions given below

are chosen for convenience only. In the next section we show they are easily

applied to the compressible Navier-Stokes equations.

Lena 4.1. As throughout, suppose that all of the basic preliminary

assumptions of Section 2 are satisfied. In particular, assume that u- c R

and u+ e rk(u_), where rk(u ) is a branch of the Hugoniot locus on which

the entropy condition (2.5) is satisfied. Moreover, assume the following:

(a) G' C VE(R)

where here G' C Rn is the set of states that can be reached by any smooth : '

path y(t) with y(o) -v_, T A(y(t)) ) 0 and 0 4 A(y(t)) 4 A(u+).

Second, assume that Qb(v) > 0 and a(v) of the modified viscosity matrix

(4.6) is constructed so as to satisfy

(b) c1 C a(v)Q 1(v) c
b

for some positive constants cI and c2 any every v e VE(R). Finally,

assume that for all v c we have

(c) [Qb(v)Q b1(v)]/ 2 ) g'((CIV 1
2 + 1v2 12 )1/ 2 )b -"v-

for some smooth nondecreasing function g(r) with lim g(r) = + . Then forr ++

-19-

p-. * -. _ .*, _. , .,. -. , . o... . . .-. •. -. ... . ..- . . . . .-,- .- .- ,. -. ... . . . . . . ., . . . . . ...-. ....'_:'... . '. '..} , .,', >



any E 0, the modified travelling-wave equation (4.5) has a solution, and q

denoting this solution by v~ Mt, we have the estimate: +Au

g((cIv E t) 12 + IV ECt)I2)112) 4 ' a~,)vI ~

Proof: Observe that for any & e RI1  we have that

u~u~))EB ( ) >ir. IHuv)+;u _IM n1 2 + Q bI V) 1 2121 ,'

Cv)X 1~,+UItz-1 12] 12I
aa

where In,!2 + In 12 =1 and where we use the notation - / 1~ )T.

Using condition (b) one easily shows that the right hand side above dominates

I H(u_,u ;u)I in(-L, 1)min(cl,Q (V)Q 1(0))I
2 bl

and condition (c) gives us that this dominates

* for some positive constant c. (Note that above we have assumed that

<'II ci, of course we lose nothing by doing this.) Recalling that Wk.

* Lemma 2.1 gives us that IH~u_,u+,u)I > c~u_.,u..,O) for u outside any open

set containing u- and u+, we set d - and mimic the proof of

Theorem 2. This completes the proof of the lemma.

The estimate of L.emma 4.1 establishes that IV2 tjI is bounded

independent of C; (provided that condition (c) does not depend on e.) With

an additional hypothesis we can show that IV Ct)I remains bounded

* independent of e and therefore obtain a uniform maximum-norm estimate.

* Lemma 4.2. In addition to the hypotheses of Lemma 4.1, assume the following:

Suppose there exists a compact set fl C R'P of the form:

Ra {V V1  S2 ) {V V Iv1 RI rG

where R is taken large enough so that %

g(R) > g(max~c,1)Iv I) + A~u +)

-20-
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a C MP contains (V,)_ and (vl) + , and 1 is such that for any-* R . --.
v G' with v* C A IvI 4 R we have that

W (V*) n 1MI
V R

R
is of one sign. (n R AP is the outward unit normal to a1  Then v (t)

R)-

remains trapped in n for all e > 0. -.-

Proof: By the estimate of the previous lemma we have that

g((CIV,(t)l + Iv (t)I2 )' 2) < g(R) and this implies IvW(t) -C R. Using " -

the differential equations (4.5) and the assumption of this lemma we have that

ni is either forward or backward invariant with respect to v (t). Given

1 1
C > 0 suppose that vIt) RA for some t. If this were the case then we

could not have lim v Ct) - v,. But this violates the result of Lemma 4.1

and therefore establishes the result of the present lemma. -.

The next lemma implies the result of Lemma 4.2 as well as giving a
dv I _

uniform maximum-norm estimate for d-

Lemma 4.3. In addition to the hypotheses of Lemma 4.1, suppose we could find

a smooth function h •: P + SP  such that the surface

m{(h(v 2 ),v2) :v 2  RnP} '"

contains v_ and v+ and is such that Xv 1v) 0, (i.e.

H1(u_,u+;u(v)) - 0), for every v c i. Furthermore, suppose that for every

v e E1  the (p x p) matrix

((-s(u.,u+)I + Df(u(v)))(D 2E(u(v)))'lij 1 4 i, j p

(-A v))
VlV 1

is either positive or negative definite. Then vt) satisfies the uniform

estimates:

(a) Iv 4 K ,

-21-
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(b) ' ,
-dt -- 2

for some positive constants K, and K2.

Proof: We first prove (a). The idea is to show that v Ct) stays in a small

neighborhood of Z for 0 < c < C with e0  sufficiently small. Set

6z {v : d(v,E1 ) 6}% 1 =

with 6 small but fixed and define 9..

EK<C {v : IA (v)I a(v)Kl
2 V

Defining R as in the previous lemma choose Kc sufficiently small so that a

connected branch of
KC .E2 r {v , Ivl R) n g :"

2 2v

is contained in Eo. Next, let n represent the outward unit normal of

E2  and compute that along BE n {v • lv 21 4 R) nG', n is given by

Dotting (4.5) with n gives

w

<- T - -'
dyE n A (A 0)1 I

dt VV v V'

&[J v1  b-1- T
1 2  2v 1

where = -^/IAI. Since along BE K we have IAvI = aKc, and since the

hypotheses of the lemma gives us that A is either positive or negative

definite near E., we have that the bracketed term above can be made to have

one sign. This is accomplished for all v az f {v :v 21 R1 n' by

choosing K sufficiently large when c is sufficiently small. Following the

reasoning of the proof of Lemma 4.2 completes the proof of (a).

To prove (b) observe that

1
I vC(t)l I sv = Iv (v)I '"

-22-
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Since vE(t) F n iv I R) we have I-v(t)i 4 K for all

sufficiently small e and all t. Combining this with the trivial inequality

I£ v'(t) C Ib-'(v) vlV)M , completes the proof of (b).
2

We are now 'eady to state and prove the main result of this section.

Theorem 3. Suppose that the assumptions of Lemma 4.1 and Lemma 4.3 are

satisfied. Then the partial differential equation (1.1) with singular

viscosity has a smooth travelling-wave solution u(x - st) which is the limit

of a sequence of artificial viscosity approximations. .. i
Proof: From Lemma 4.1 we have a family of smooth solutions to (4.5£) which we ___

denote by {v £} Normalize these by translating t so that

X(v£(O)) . A(u+

moreover, from Lemma 4.3 and the ArIela-Ascoli Theorem we have a continuous

Lk
.* function v(t) and a subsequence v (t) such that

Lk
v(t) - lim v (t)

+ k 0

the convergence being uniform on compact t intervals. From the proof of

Lemma 4.3 we also have that

C
H1l(u,u+;u(v(t))) lim A (v (t)) - 0

C +0 1

and the usual bootstrap arguments from the theory of ordinary differential

equations gives us that v2 (t) is a smooth solution of

dv2h(v) =H2lu_,u+;ulvl) .
.'-t

Since by assumption A is nonsingular for v c Elf we have from the

implicit function theorem that v1(t) is smooth as well. Therefore, v(t)

-23- " "
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is a smooth solution of

B0 (v) .~ = H(u_,u+ u *v))

dtu

What remains to be shown is that lim v(t) = v,. With this in mind --

compute that * .,.

(4.7) d-X(v(t)) = (v(t)) • b-(v(t))K (v(t))
dt V2  v 2

Therefore, X(v(t)) is a nondecreasing function, and because it is the limit

of A(v k(t)), which is bounded between 0 and A(u+), we find that

0 4 X(v(t)) A(u)

Bounded monotonic sequences have limits, therefore

lim A(v(t)) =A

exist. Now define v(n)(t) by

v(n) (t) = vt + n),

and again appealing to the Arzela-Ascoli Theorem, we have a continuous

function v*(t) and a subsequence nk + -, such that
(nk .-. ..

v*(t) = lim v (t)

which also gives us that

A+ = lim A(v(t + nk)) = A(v*(t))
+ k

Integrating (4.7) from t nk  to t = 1 + nk, we have after changing

variables

1nk) (n k
A(v (1)) - T(v (0))

1 k I - k (n)
= f Av(V (t)) ° b (v (t))X (V (t))dt %

0 v 2  v 2

-24-
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Letting nk + implies that

0 -A ) b (v*(t))2 (v*(t)) '
v2 2 2

and therefore

(v(t)) = H2 (u.,u+lu(v*(t))) - 0

Combining this with the fact that Hl(u.,u+;u(v*(t))) = 0, we have that

u(v*(t)) is one of the two critical points of H(u.,u+,u). However because of

the normalization, that is 1(v(0)) M A(u ), we must have that
2 +

v*(t) = v+. The same argument can be applied equally well to any subsequence

of v~n )(t) - v(t + n) which shows that lim v(t) - v+. Similarly,t+W
lim v(t) v.- and so the proof of the theorem is complete.

§5. APPLICATION TO THE NAVIER-STOKES EQUATIONS

In this section we apply Theorem 3 to the compressible Navier-Stokes

equations. From our analysis we conclude that these equations admit a smooth

travelling-wave which is the limit of certain artificial viscosity

approximations. Throughout this section we shall assume that

[m,~ )T. .o. 0

u = e R {(p,m,e)u_ [: £ R (=ue p > 0, P > 0},

and we assume that u+ • rk(u) where k I 1 or k 3 (the genuinely

nonlinear fields); see equation (2.8). Moreover, because the Navier-Stokes

equations are invariant under a Galilean change of coordinates, we lose no

generality by taking the shock speed s equal to zero. "''--"

We begin by explicitly transforming the travelling-wave equations for

Navier-Stokes into the coordinate system given by the gradient of its entropy

-25-
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W.-w V.V- .7 -r- - t.-

function

E(u) - P log(/((y1pY})

Computing some derivatives we find that -

3E2 2
"v = = -log(2pe - m ) - 2pe/(2pe - + (y + 1)(log(p) + 1) + log 2 %

aP
tE =2pm/(2pe - m2) (=(y - 1) ,v2 =am = ~

_ 2p2/(2pe m 2) ( Y ")='

Inverting these equations we obtain

(_ yl -1 1  ..2-'.,

M P(v)v 2/(-v 3

e = P(v)(1 + v2/(-2v 3 ))/(-v 3) .

Therefore

f M'=  = P(v)v2 /(-v3 )

2 2

S=-+P p(v)(1 -Y + v /V3 )/v3  "
f2 2 3 "3'

= (e + P) P(v)v2 (Y/v3 -'I (v2/v3 
2 )/v3

and it is easily verified that

f(u) - f(u_) = V X(v)

where

A(v) = (Y - 1)P(v)v2/(-v3) -f(u) v + const

and where the constant is chosen so that A(v) = 0. Moreover, a rather

lengthy calculation will reveal that

-26- .



B(V) E 1MEUV)-

0 0 0

0 -1/v3  v02 v
= 0 -1v 3 V - V2/v , -

23 2 3 c 3
*0 v2/v3  " "2/ 3 + -- 1/v3  p*-"

L v

(The viscosity matrix A(u) for Navier-Stokes is given in Section 1.) Note

that in the v-coordinate system the region of physically admissible states is

VE(R) - {v v3 < 0).

The result of this section is obtained by establishing the hypotheses of

Theorem 3. To this end we first establish hypothesis (a) of Lemma 4. 1. That

is we show that the set G' is contained in a closed subset of VE(R).

(Recall that G' is the set of all states that can be reached by any smooth

path y(t) with y(0) - v-, L X(y(t)) ) 0 and which satisfies
dt

0 (- (y(t)) < X(v+).) We accomplish this by constructing what we call a
+. 7

"A-wall". Specifically, we show that when k - 1, m_ > 0 (The case

k 3, m_ < 0 being similar) there exists a closed set of the form * .

W -. {v : v2 > a > 0, v3 ( 0 < 0)

with v f W, v+ e aW such that for any v* c aW\{v+) we have

X(v*) > X(v+). Having this wall W implies that G' C VE(R). .

Remark 5.1. The entropy condition (2.5) implies that the momentum component

of u. (i.e. m_) for the Navier-Stokes 1 or 3 zero-speed-wave can never be

zero. See (2.7) and compare it with the entropy condition (2.5).

To see that W can be made to have the properties described above, set

-- (v2 )+. +

* and

2a.. . -
- 4(y - 1)/(f 2 (u)/m)
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(From the remark above (f2 (u_)/m_)
2  is positive and bounded.) By checking

the sign of X_ X(v*) for

T7 j

-3

v* 1  "r X(v) - 0, v2 - (v2 )+, v3 ( o1 ,4

it is clear that X(v*) > A(v+) when v* # v+; see Figure 1. Moreover, it

is easy to check that X(v*) > 0 for

vC I { va. X(v)= 0, v2  ( (v2)+ , v3 = - 4 - 1) 21
v (f 2(u.)/m

so we have A(v*) > A(v) here as well; again see Figure 1. Finally,

X(v*) is positive (resp. negative) if v* e 3W with v* lying above

(resp. below) the surface {v : - X(V) - 0, V2 > 0, V3  s 0, so we conclude

that K(v*) > A(v+) for all v* e a\{v+}.

v3  v 2  i-."

2v 2

-V

Figure 1 ,...-

a " ~Next we establish hypotheses (b) and (c) of Lemma 4.1. Define the ---.

viscosity submatrix '''
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r-1/v v 2

b(v) -i

v 2 /V3  -v 2 /v 3  c~ 3/

and construct the artificial viscosity ea(v) B M~(v) so that for all

Ci a (v)Q -I(v) < c2 ,

where c, and c2  are some positive constants. Note that for a symmetric ~

matrix S, QS is given by the smallest eigenvalue of S. .i
*Remark 5.2. This particular artificial viscosity has the form (1.5) vhen

written in conserved variables.

An elementary calculation will show that

(iv7 T )Iv3I + 2
b v

+F.7 +L v31)

and for any v e W this dominates

2c

(1+ v2t + 1v31)

for some positive constant c. With this estimate we can satisfy hypothesis

*(c) of Lemma 4.1 by choosing g(r) c log(1 + r).

TO conclude this section we show that the Navier-Stokes equations satisfy

the assumptions of Lemma 4.3. Solving the equation T.a- X(v) -0 for v, we

* find that

-29-



2 3
v, h(v 2 Iv 3 )u~..~ + Y + CT I) 2o

and clearly this is smooth in W. Finally for v -(h(v 21v3 ),v2 ,v3)1 that in -M

for v such that 3 (v) -0, we have that

* and as Remark 5.1 points out, m_ can never be zero for a zero speed 1 or 3

wave. Therefore we have established all of the hypotheses of Theorem 3 and

hence conclude the result of Theorem 3 for the Navier-Stokes equations.
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